|
|
|
#set m, n for resized image size |
|
m = 256 |
|
n = 256 |
|
data = [] |
|
|
|
expandedPosClass = resizeAndExpandDataset(posImageList, m, n) |
|
expandedNegClass = resizeAndExpandDataset(negImageList, m, n) |
|
|
|
for im in expandedPosClass: |
|
data.append([np.array(im), 1]) |
|
for im in expandedNegClass: |
|
data.append([np.array(im), 0]) |
|
|
|
#randomly shuffle the data |
|
np.random.shuffle(data) |
|
|
|
#split the data into training and testing data |
|
train_data, test_data = train_test_split(data, test_size=0.3) |
|
|
|
# split the data into features and labels |
|
train_x = np.array([i[0] for i in train_data]) |
|
# train_x = tf.expand_dims(train_x, axis=-1) |
|
train_y = np.array([i[1] for i in train_data]) |
|
|
|
test_x = np.array([i[0] for i in test_data]) |
|
test_y = np.array([i[1] for i in test_data]) |